Assignment 5

Coverage: 15.6, 15.7 in Text.

Exercises: 15.6. no. 9, 12, 13, 21. 15.7. no. 14, 15, 19, 26, 32, 34, 37, 42, 54, 76. Submit 15.7. no. 14, 19, 37, 42, by Feb 22.

Supplementary Problems

1. (Optional) Let P be a plane given by the equation ax+by+cz = d. Show that the distance from a point (x_0, y_0, z_0) to P is given by the formula

$$\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}} \; .$$

Hint: Treat it as a constrained minimization problem.

2. Let Ω be a region in space which is symmetric with respect to the *xy*-plane, that is, $(x, y, z) \in \Omega$ if and only if $(x, y, -z) \in \Omega$. Show that

$$\iiint_{\Omega} f(x, y, z) \, dV = 0 \; ,$$

when f is odd in z, that is, f(x, y, -z) = -f(x, y, z) in Ω . You may assume Ω is of the form $\{(x, y, z) : f_1(x, y) \le z \le f_2(x, y), (x, y) \in D\}$ and $f_2 = -f_1 \ge 0$.