Assignment 5

Coverage: 15.6, 15.7 in Text.
Exercises: 15.6. no. 9, 12, 13, 21. 15.7. no. 14, 15, 19, 26, 32, 34, 37, 42, 54, 76.
Submit 15.7. no. 14, 19, 37, 42, by Feb 22.

Supplementary Problems

1. (Optional) Let P be a plane given by the equation $a x+b y+c z=d$. Show that the distance from a point (x_{0}, y_{0}, z_{0}) to P is given by the formula

$$
\frac{\left|a x_{0}+b y_{0}+c z_{0}-d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

Hint: Treat it as a constrained minimization problem.
2 . Let Ω be a region in space which is symmetric with respect to the $x y$-plane, that is, $(x, y, z) \in \Omega$ if and only if $(x, y,-z) \in \Omega$. Show that

$$
\iiint_{\Omega} f(x, y, z) d V=0
$$

when f is odd in z, that is, $f(x, y,-z)=-f(x, y, z)$ in Ω. You may assume Ω is of the form $\left\{(x, y, z): f_{1}(x, y) \leq z \leq f_{2}(x, y),(x, y) \in D\right\}$ and $f_{2}=-f_{1} \geq 0$.

